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Abstract

The target detection process in sea clutter background
involves the use of diferent types of CFAR (Constant
False Alarm Rate) algorithms. These algorithms and their
parameters should be configured to obtain the maximum
detection probability and minimum false alarm
probability at the current sea state (Beaufort scale). This
paper present an FPGA-architecture for automatic
classification based on texture recognition of sea states.
The sea state texture classification will allow select the
appropriate CFAR algorithm and its parameters for the
target detection process. The paper is centered in the
hardware implementation for sea state texture
classification, based on decision tree. The rules for
decision tree are obtainedfrom the analysis of the grey
levels co-occurrence matrix features applied in an image
of the sea state obtained in a radar scan. Results with
simulated and real data are presented and discussed.

1. Introduction

The target detection process in background sea clutter
can be automated by means of a detection processor
known as constant false alarm rate processor (CFAR
processor) [ 1 ]. This detection processor is based on
statistical models with known parameters that are
proportional to the expected magnitude power of radar
echoes. The envelope of radar echoes are digitalized at
different sample rates, each sample is named range cell.
The detection processor calculates a threshold adaptively
based on a local noise power of a group of reference cells
surrounding a cell under test.

Detection algorithms have been developed with
adaptive threshold in order to maintain a low level
constant false alarm rate and high probability of
detection. Such is the case of the classical Cell Averaging
(CA) CFAR processor, which sets adaptively the
threshold estimating the mean level in a window of M
range cells. Several modifications have been proposed to
improve their performance for different sea clutter

conditions. Among the main variations of CA-CFAR
algorithm are Greatest Of (GO-CFAR), Smallest Of (SO-
CFAR), and Order Statistics (OS-CFAR) [1]. Each one of
these CFAR variants solves the problems associated to
sea clutter power transition only if the threshold
calculation is obtained with a priori Knowledge of the
current sea clutter type (Beaufort scale'). The main
problem is to determine at which clutter type belong the
new radar scan data, in order to associate a statistical
model with CFAR algorithm to maintain a high
performance in target detection process.
To solve this problem, a texture analysis method can be

used to classify remote sensed images [2]. In our case, sea
texture recognition to obtain a new classification of
twelve sea state. The image texture is defined as a
function of the spatial variations in grey values pixel
intensities; we can extend this definition to radar signals
as power level variations in return echoes. The spatial
distribution provides a significant amount of information
for the interpretation of the peak waves distribution in sea
clutter, this information is interpreted as a sea texture [3].
The texture classification involves to decide which of the
twelve texture categories to observed radar scan belongs
to. For this classification a priori knowledge of the classes
to be recognized is needed. At this point we have used the
sea clutter model reported in [4], [5]. With this
knowledge we carry out the texture analysis of each one
model that describes the sea state levels. The grey level
co-occurrence matrix (GLCM) and its features are
obtained for twelve classes defined in the problem. As an
off-line work we have obtained texture features from a set
of radar images and we have used this information as a
training set for different classifiers to obtain a
classification based on decision tree. Weka (Waikato
Environment for Knowledge Analysis) tool was used for
data processing [6].
The main purpose for the FPGA-architecture is to
calculate the GLCM and extract texture features to
evaluate the decision tree and provide the classification
for the sea state. The calculations of texture analysis were

1 The Beaufort scale is a twelve sea state classification
based on the wave height and wind speed
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elaborated in fix point arithmetic to reduce calculation
complexity and memory space.

The content of this paper is as follows: Section 2
describes the related work in texture analysis and
architectures. Section 3 presents the methods for the sea
state texture recognition. Section 4 provides a description
of proposed FPGA-architecture. Section 5 presents some
results obtained, which are discussed. Finally, some
conclusions are presented in section 6.

2. Related Work

The pattern obtained by the reflectance of
electromagnetic waves over the sea surface can be
obtained by texture analysis. In these sense Ruiz et al [7]
report the effectiveness of second order statistics by
means of GLCM features, for applications where the
space distribution of grey levels or power levels is
important, such as in radar signals. Texture procedures
require a great quantity of storage and a high
computational cost when matrices are manipulated
sequentially. To solve the problem many works have
proposed FPGA-DSP architectures for calculation
increase and take advantage of the parallelism in texture
algorithms. Ye et al [8] they stand out those procedural
textures can be effectively used to enhance the visual
realism of 2D and 3D images. They proposed an FPGA-
DSP architecture for analysis texture of images on the fly;
with this method they reduce the storage. Pico et al [9]
proposes a texture analysis co-processor. This work
shows that second order statistics analysis does not
necessarily imply a complex and expensive
implementation in order to obtain good results in texture
analysis. They propose hybrid FPGA-DSP architecture in
floating point arithmetic to calculate texture features, but
only in DSP module. In [10] Bariamis et al propose an
FPGA-DSP architecture for Image texture extraction.
They propose fix point arithmetic calculations in FPGA
and floating point calculations in DSP.
Pezzuol et al in [11] propose a method to reduce and
transform a decision tree into binary decision tree in order
to facilitate FPGA synthesis.

3. Methods

In this section, the used data characteristics and
methodology for texture classification are presented.
Spatial data distribution and spatial dependence in radar
scan images deserve special attention. These properties
are essential for classification performance.

3.1 Data sets

The images used in this work have been generated with
synthetic and real data. With simulated data have been
generated sea clutter images for each sea state, each one
with a clutter statistical model as a Weibull and K with
different parameters. These data have been processed to
present similar characteristics to real data. That is 8 bits
resolution or 256 grey levels and mean equivalent to
termic noise of 5OmV. The size of all images is 512x512
pixels.
The real data have been generated with non-coherent X

band radar with ten meters of range resolution. The
returned echoes have been digitalized at 8 bits or 256 grey
levels at 100MHz. The row data make a 4096 x 4096
matrix for each radar scan (radar image). An image of
512 x 512 is extracted in each radar scan. The real images
for this work correspond only to sea state 1 to 4. The
figure 1 shows textures of real images and texture details
of the surface.

3.2 Co-occurrence features

For classification of sea texture we calculate 8 statistical
features derived of grey levels co-occurrence matrix
(GLCM), based on the features proposed by Haralik [12].
One of the defining qualities of texture is the spatial
distribution of grey levels, in our domain, the power level
of radar signal. The GLCM describes the spatial
distribution of data in a window of radar scan.
The GLCM estimates image properties related to

second-order statistics, considering the spatial relation
between reference pixel and the neighboring pixel. This
spatial relation can be represented by a displacement
vector d = (dx,dy) [2]. The GLCM can represent
displacements in 4 directions named 00, 450, 900 and 1350
as shown in figure 2. For our domain, only 00 and 900
direction are analyzed. These directions are equivalents to
range and azimuth in radar image. The vector distance
used is dx, dy=1,2,3,4 due to radar resolution.
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Fig. 2. Neighbors of reference pixel and displacement
directions.
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The GLCM is applied on N x N image, N=512, The
image is defined as {J(x,y), O<x<N-1, 0<y<N-1} with
G=256 grey levels. The G x G GLCM denoted by Pd for a
displacement vector d = (dx,dy) is defined as shown in
the equation 1. The entry i, j of Pd is the number of
occurrences of the pair of gray levels i and j which are a
distance d apart.

Pd (i, j) = ((r,s),(t,v)): I(r,s) =i,I((t,v) =jI (1)

Where:
(r,s), (t,v) e N x N
(t,v)=(r+dx,s+dy)

The off-line work on the texture classification showed
that the features that better classify the sea states are those
that were implemented in the FPGA and they are
described next

The dissimilarity is a measure of local variation of an
image. It is defined as:

n-I

Dissimilarity = Z Pvj i- jI
i 0=o

(2)

I n-I V
MDI = - I i j

Vni,j=o +(i-j)2
(8)

Where:
1/Vn, 1/Vn2 represent integer numbers for normalization.
1/ +(i_j)2 is pre-calculated and stored in a LUT

The equations 5. 6, 7, 8 are used for obtain the GLCM
and texture features with integer values. With this
features the next step is evaluate the decision tree
obtained in the off-line work. We have obtained decision
tree for simulated and real data. For real data the percent
of classification obtained with training data is 90.47%
using MDI and dissimilarity features and for test data is
90%, both using the classification algorithm C4.5[6].
Figure 3 show the confusion matrix, it can be observed
that wrong classified sea states has been classified as sea
state with one level of difference. Figure 4 show the
decision tree for real data, similar trees has been obtained
for synthetic data.
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Two important features that provide good results in the

analysis of grey levels [13] are the moments. Equations 3
and 4 represent the angular second moment (ASM) and
inverse difference moment (MDI).

n-1
ASM = p 2

ij
i,j=o

n-I p
MDI= Z i,ji,j=o _ j)2

(3)

(4)

In all equations Pij represent the GLCM normalized,
this is obtained dividing each entry Vij by sum of all
entries Vij as show in equation 5.
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Fig. 3. Confusion matrix a) training set b) test set.
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To carry out an implementation on the fix point
arithmetic, we have transformed the equations 2, 3, 4 like
it is shown next

I n-I
Dissimilarity = E Vij i-j

I n-I
ASM= v2 ,j

Vn i,

(6)

Fig. 4. Decision tree for real data.
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4. Architecture description

The proposed architecture consists of two stages:
texture analysis and texture classification. In the first
stage the radar image is analyzed, the GLCM with integer
values is obtained. The features textures are extracted of
this matrix, this information is processed for a second
stage, which is a decision tree for the texture
classification. Figure 5 show a block diagram of the
proposed architecture.

Texture analysis

ate

Texture
classification

Fig. 5. Proposed architecture.

4.1 Texture analysis

The first stage of the proposed architecture named
texture analysis is composed by 4 processor elements
(PE) named PEGLCM, PEASM, PEMDI, PEDIS. The
first PE calculate the GLCM with integer values, this
process is carried out by a set of accuulator that counts
the grey levels in a neighborhood. Figure 6 show a block
diagram for this PE. The input for this PE is a pixels of
the radar image, the value of the pixel(i,j) is the row index
while pixel (i,j+d) is the column index for the selected
accumulator to increase in 1. At the final process the
accumulators contain the GLCM values

Pix(ij
p<ii(+d)

Col
Ro

Acc Acc ... Acc
Acc

Acc ... Acc

P. E GLCM
Fig. 6. Processor element for the GLCM

The angular second moment feature texture is obtained
processing the GLCM data with equation 7. Figure 7
show the block diagram for this processor element. The
input for this PE is Vij that represent the element i,j of the
GLCM and Vn2 that represent the normalization value.

P. E ASM

Fig. 7. Processor element for ASM

Figure 8 show the processor element for the inverse
difference moment, this feature is obtained processing the
GLCM data with equation 8. The input data is Vij and
1/Vn discussed in the previous section. The elements i, j
select the appropriate value in the LUT for the expression

/1 +(i_j)2.

P. E MDI

Fig. 8. Processor element for MDI

Finally the dissimilarity is calculated with equation 6
and a block diagram is showed in figure 9 where shows
the data input for obtain dissimilarity.

P. E DISIM

Fig. 9. Processor element for dissimilarity

The latency in this stage depends only of the size image
to process, since the PEASM, PEMDI and PEDISIM can



process data until the PEGLCM finalize the construction
of the GLCM. For this experiment we have used radar
images of 128x 128 pixels and 256x256 pixels with 8 bits
or 256 grey levels.

4.2 Texture classification

The second stage of the proposed architecture evaluates
a decision tree obtained in off-line work described in
section 3. This stage consists of one PE whose block
diagram is showed in figure 10. The implementation of
decision tree is a module that change constantly and
depend of the process of classification, therefore this
module should be reconfigurable. For this experiment
only have been implemented two decision tree, for
simulated and real data. Figure 10 show the
implementation of decision tree showed in figure 4
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Fig. 10. Processor element for texture classification

5. Results and discussion

The architecture was implemented in a FPGA of family
Virtex2 xc2v250-6-fg256 in VHDL language. Some
statistical data of the implementation are sowed next.
The Design Statistics
# lOs :132
# Registers 5
# Adders/Subtractors 3
# Multipliers 7
# BELS :235
# FlipFlops/Latches :116
# Clock Buffers 1
# 10 Buffers :131
# MULTs :9

Selected Device: 2v250fg256-6

Number of Slices: 81 out of
Number of Slice Flip Flops: 116 out of
Number of 4 input LUTs: 80 out of

1536
3072
3072

Number ofbonded 1OBs:
Number ofMULT18X18s:
Number of GCLKs:

132 out of
9 out of
1 out of

172 76%
24 37%
16 6%

Timing Summary:

Minimum period: 6.975ns (Maximum Frequency:
143.369MHz)
Minimum input arrival time before clock: 7.247ns
Maximum output required time after clock: 6.780ns

The maximum frequency is 143 MHz but at the moment
the maximum frequency for the acquisition data is
100MHz. The image radar scan must be acquired and
proceced in 2.5 seconds therefore the implementation can
be process data in real time.

The extraction ofGLCM requires scan all image therefore
the maximum latency depend only of the image size. In
the current work the image size tested was 16x16,
128x128 and 256x256 pixels with 16, 128 and 256 grey
levels respectively

The results obtained were validated with an application
developed in matlab working with floating point
arithmetic. The comparison with results obtained with
proposed architecture shows that the maximum error
obtained is 0.46% in the worst case. This error is
compatible with the error in confusion matrix, generating
a bad classification only in one level of the sea state.

6. Conclusions and future work

We have proposed an architecture to carry out two
fundamental tasks. Fisrt, a textural analysis based on the
co-ocurrences matrix. This calculations in this
architecture are in fixed point arithmetic reducing the
computational complexity and the problem of storage,
processing the images on the fly, improving the error
reported by Barianis in [10]. Second, the classification of
sea texture based on decision tree. This module must be
modified according to decision tree obtained in an off-line
work, therefore is a good module for reconfiguration. The
results obtained sows that the architecture is a good
classifier for sea states. As future work we are developing
a modulate to calculate the energy analysis using the
energy features of Lews to increase the 90% of the
classification showed in the confusion matrix ofthe figure
3.
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